
Implementing Pyramid Structure for Generating
Efficient Personnelized Recommendations

Minakshi Pachpatil, Anjana N.Ghule

Computer science and Engineering Department, B.A.M.U.University
Govt.Engg.College,Aurangabad

Maharashtra,India

Abstract— In this paper location–aware recommendation
system that uses spatial ratings to produce personalized
recommendations. System uses Collaborative filtering
techniques to generate recommendation based on user
location,item location or both user and item location . LARS*
uses spatial ratings for spatial items , Spatial ratings for Non-
spatial items, Non spatial ratings for spatial items to generate
personalized recommendation. For spatial ratings for non
spatial items LARS* uses user partitioning technique where
spatial ratings are distributed as per user location in the
pyramid. Pyramid Maintenance algorithm provided to
achieve required scalability or locality. Travel penalty
technique is use to find recommended item with minimum
distance from querying user. For spatial ratings for spatial
items both the techniques are combined with very small
modification. LARS* is scalable as number of γ-cells are
increased in pyramid and to improve locality α-cells are
increased to maintain CF Model. LARS* is efficient as
compare to traditional recommendation system because
algorithm provided is strong enough to cope challenge of
locality and scalability.

Keywords— social ,performance, efficiency, scalability
Recommender system, spatial, location.

I. INTRODUCTION
The goal of recommender system is to generate personalized
recommendations for items or products that might interest them.
Suggestions for books on Amazon[1],or movies on Netflix are
example of recommender system. Recommender systems make
use of Collaborative filtering that make use of past community
opinions to find similar users or items to generate number of
personalized items.Content based filtering that make use of user
profile or description of items. Currently working
recommendation system make use of (user , item, rating)
attributes which is not produce location based recommendations.
Spatial recommender system embeds user /item location with
ratings e.g. location based social networks(e.g. Forsquare and
Facebook Places[4]) allow check-in at spatial destination & rate
their visits, Sindbad [3] a location based social network system
injects location awarenesss within every aspect of social
interaction and functionality in the system.LARS* produces high
quality recommendations using Collaborative filtering in an
efficient manner. System produces recommendations using three
types of spatial ratings in a single framework. (1)Spatial ratings
for non spatial items represented using 4-tuple (user, ulocation,
item, rating) where ulocation is the user location , e.g. user at
home gives rating to the movie/books/restaurant etc.(2)Non-
spatial ratings for spatial items having 4 tuples(user, item,
ilocation, rating),here item location is specified.e.g. user from
unknown location rating a restaurant/hotels. (3) Spatial ratings for
spatial items has 5- tuples(user, ulocation, item, ilocation,

ratings).e.g. user at his/her location rating a restaurant visted for
lunch.
Two techniques that motivate the need for location aware
Preference locality: preference locality suggests that user ratings
from one spatial region are different from ratings in another
spatial region. Recommendations should be generated by those
ratings which are spatially close to the querying user.
Travel Locality: when recommended items are spatial then user
has to travel minimum distance when visiting these venues. This
property is termed as “travel locality”.

II. LARS OVERVIEW
This section provides overview of LARS* query model and
Collaborative filtering method.
A. LARS* Query Model

Application has given UserId U, K Numeric limit, Location of
the user L, then LARS* generates K-recommended items for
querying user. It can support snap shot queries and continuous
queries.
B. Item-based Collaborative Filtering.
Main idea of collaborative filtering is to use past opinions of user
community to predict which item current user will prefer or
interested in. Pure collaborative filtering approach takes user-item
matrix as a input and produces following types of output. (1) list
of n-recommended items which contains those items that user not
purchased before. (2) (numerical) prediction indicating to what
degree current user will like the items. In Collaborative filtering
assumes a set of n items I={i1,i2,…in} and a set of m users
U={u1,u2,…..um}, and each user ui has list of items Iui for
which user expressed opinions. Opinions can be numeric rating
e.g.(1 to 5 where 1 represents bad choice and 5 represents best
choice) or unary rating (e.g.checkboxes) .Active user Ua for
whom the collaborative filtering generates the k-recommended
items.
It has two forms.
Prediction: Predicted value is specified in same way as opinions
are expressed by active user ua. It is the numerical value
expressing predicted likeliness of item ij.
Recommendation: A list of items Ir that active user ua will like
most it is the items such that Ir ∩ Iua=ᶲ.
In item based collaborative filtering prediction is computed using
similarity between items. Cosine similarity is used to compute
similarity as it produces more accurate result. The similarity
between two items a and b is defined as a rating vector ͞a and ͞b as
shown in fig.2. Similarity difference is calculated as follows.

The possible similarities are between 0 and 1,where 1 indicates
strong similarity. After the similarity between the items are
calculated the next stage is to predict the rating using

Minakshi Pachpatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3302-3306

www.ijcsit.com 3302

prediction.For user u and product p prediction is calulated as
follows.

Prediction is the sum of ru,i, a user u’s rating for item i ,weighted
by sim(i ,p) similarity of product p to candidate item i,then
normalized by similarity score between i and p.
User receives as recommendations the top k-item ranked by
pred(u ,p).

III. SPATIAL USER RATINGS FOR NON-SPATIAL ITEMS.
LARS* produces recommendations for spatial ratings for non-
spatial items using the tuple(user, uloction, item, rating). Main
aim is to achieve preference locality i.e. user opinions are spatially
unique, To produce recommendations there are 3 requirements.
(1)Scalability: System should be scalable as number of users goes
on increasing. (2)Locality: while generating the recommendations
consider the ratings of those user spatially close to the querying
user. (3)Influence: ability to control the size of spatial
neighborhood by system users.
User partitioning technique is use to generate recommendations.
This technique uses pyramid structure where space is partitioned
into different levels of the pyramid as per user location attribute.
System then produces recommendations using remaining
attributes(user, item, rating). Shape of the pyramid is driven by
three goals scalability, influence, locality.

Fig. 1. Item-based CF Model generation.

(a) Rating Matrix. (b)Item based CF Model.

Fig.2. Item-based Similarity calculation.

A. Data Structure.
The pyramid divides the space into h different levels. It make use
of partial in-memory pyramid structure[11] as shown in fig.4. For
a level h pyramid partitions the space into 4h equal area grid
cells. At level 0 (root) representing the total geographic area as a
one cell. Level 1 partitioned the space into 4 equi-area cells, and
so on. Each cell is represented as by unique cell id. As per the
need of recommendation locality and scalability pyramid
maintains three types of cells. Empty Cell(γ-
cell),Recommendation model cell(α-cell), Statistics Cell(β-cell),
Empty Cell(γ-cell).
Recommendation Model Cell(α-cell). Each (α-cell) stores an
item based collaborative filtering model. This model is built
using spatial ratings located in spatial region of that cell. The α-
cellis the root cell of the pyramid and represent traditional item

based collaborative filtering model. α-cell maintain items ratings
statistics which is in its spatial extents. If Cp is α-cell it contains
rating statistics of its 4 cells as shown in fig. 5. For item i1 ratings
located in child cells equal to 109,3200,14,54.

Statistics Cell(β-cell). It contains statistics which is within its
spatial region. Difference between α-cell and β-cell is that β-cell
does not maintains Collaborative filtering model.It is light weight
cell as it require less space as compare to α-cell.
Empty Cell(γ-cell). γ-cell is a cell that does not maintain statistics
and collaborative filtering model. So it is the most light weight
cell as it has no CF model. α- cell is responsible for answering
recommendation queries as it contains collaborative filtering
model. Pyramid structure that contains only α- cells achives
highest locality. Statistics maintained in β- cell determines
whether the children of that cell is of α- cells for locality point of
view. γ- cells is leaf cells in the pyramid. Based on the tradeoff
between locality and scalability cells are upgrade or downgrade.
To achieve locality more α- cells are maintained in the pyramid
and to achieve scalability more γ-cells are maintained. β –cells
comes as intermediary cells which further increase the locality
where scalability is not affected.

Fig.4 Pyramid Data Structure.

Fig.5 Example of Item Ratings Statistics Table.

B. Data Structure Maintainance.
Root cell in the pyramid represents entire region and cells in
lowest level representing more localized regions.Initially pyramid
is constructed using all spatial ratings and all the cells in the
pyramid is α-cells. Then invoke cell type maintenance step which
scans each cells and downgrades cells to (β –cell or γ –cell) if
necessary.
As number of users and items added to the system data will goes
on increasing. So that size collaborative filtering model as well as
number of recommendations produced from each cell also
increasing. Cell maintenance is invoked when cell receives N%
new ratings, which is computed from the existing ratings.
Features of pyramid maintenance as follows.
(1) Maintenance is performed offline using old pyramid cells.
(2) Maintenance does not reconstruct the whole pyramid at
once ,only one cell is rebuilt at a time.
(3)Maintenance is performed only when N% ratings are received
by the cell.

Minakshi Pachpatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3302-3306

www.ijcsit.com 3303

C. Maintenance Algorithm.
Algorithm1 provides pseudocode for pyramid maintenance
algorithm. It receives input as a Cell C, level h. This algorithm
includes three main steps.
Step I: Statistics Maintenance. Parameters in cell C for each item

i represents number of user ratings associated with its
four children.Item ratings statistics table contained
ratings which are in spatial extents of cells.
If N% new ratings received then cell switching
decision is made.

Step II: Model Rebuild. As the cell receives new ratings the
second step is to rebuild Item based collaborative
filtering model. Model is rebuild at cell C only if cell
is α-cell. It is necessary to rebuild the model as new
ratings enter the system and it should be evovlve in
Collaborative filtering model.

Step III: Cell Child Quadrant Maintenance. Pyramid is driven by
three goals scalability, influence, locality. Locality
and scalability is achieved by cell switching decision.
If Cell C child quadrant cells are α-cells then these
cells are downgraded to β-cells by calling function
CheckDowngradetoScells. If child quadrant cells are
β-cells then cells are switched to α-cells by calling
function CheckUpgradetoMCells. If child quadrant
cells are β-cells then LARS* first considers to swith
the cells to α-cells i.e. cell upgradation is done. If
cells are not switched to α-cells then downgraded to
γ-cells. Cell switching decision is taken completely in
quadrants.

1) Recommendation Locality
Running Example. Two level pyramid in which root cell is cp and
it is divided into four cells c1,c2,c3,c4 shown in fig.6. Eight users
u={u1,u2,……,u8} and eight items i={i1,i2,….i8}. each user has
given ratings to available items. As shown in fig. 6(b) user u2 and
u5 belongs to cell c2 both rated the items i2,i5. So the similarity
score calculated at c2 is similar to similarity score calculated at
parent cell cp. As both the users belongs to same cell. This will
not be same if users belong to different cell. LARS* loses the
locality if CF model produced at child cells different than the CF
model at parent cell. System calculates locality gain/lost as
follows.
 Locality Loss/Gain. Table2 gives mathematical notions used for
calculating locality loss/gain. Items ratings pair set (RPc,i) is a set
of pairs of users have rated item I in cell c.
e.g. RPcp,i7 is the item rating pair set for item i7 in cell cp with
three elements i.e. RPcp,i7 = { <u3,u6> ,<u3,u7> ,<u6,u7>}. For
each item define the Skewed Item Rating Set RSc,I which is total
number of user pairs in cell c that rated the item I such that user
pairs does not belongs to same cell c. i.e. Skewed item ratings set
for i2 in cell cp is null as users u2 and u5 rated item i2 located in
same child cell c2. Skewed item ratings set for i4 is
RScp,i4={<u2,u7>, <u7,u4>, <u2,u4>}.
Using these parameters calculate the item locality loss LGc,i for
each item as follows.
Defination1. Item Locality Loss(LGc,i). it is defined as degree of
locality loss of item when four children cell of cell c is
downgraded to β-cell , such that 0<=LGc,i<=1.
Defination 2. Locality Loss(LGc). It is defined as total locality
loss of cell c by downgrading four children cells to β-cell
(0<=LGc<=1). It is the sum of all item locality loss normalized by
total number of items in the cell.
cell locality loss determines whether cell children need to
downgrade from β-cell to γ-cell ,or upgrade from γ-cell to β-cell,
downgraded from α–cells to β-cell.Which are explained as follows.

2) Downgrading α-cells to β-cell.
This operation downgrades the entire cell quadrant at level h from
α-cells to β-cell having common parent at level h-1. Downgrading
the cells to β-cell improves the scalability with two performance
improvement (1)Continuous query processing computation is less
as it does not maintain CF model and no need to update
recommendation query answer as it crosses boundry of β-cell if it
covers large spatial region. (2) low maintenance cost as β- cells
does not contain CF model so less CF models are built
periodically.
To downgrade the cells to β-cells call the function
CheckDowngradeToSCells in Algorithm1. It require two
percentage values (1)Locality Loss as described in prevous
section.(2) Scalability gain,the amount of scalability gain by
downgrading the cells. LARS* Downgrades the cells to β-cell if

(1-M) * Scalability_gain > M * locality_loss
M is a real number having range[0,1]. Large value of M is use to
achieve locality, Scalability is achieved by small value of M.
Scalability Gain. Scalability gain is calculated by the summation
of recommendation model size of cells to be downgraded(sizem)
divides this value by sum of sizem and model size of parent cell.
Cost. Using Item Ratings statistics table at cell cp the locality loss
is calculated inO(|Icp|) time, where Icp is the total number of
items in the cell. Time required to calculate scalability gain is
O(1). i.e. total time cost required to downgrade cells to β-cells is
O(|Icp|).

3) Upgrading β-cells to α-cells
Upgrading β-cells to α-cells increase the recommendation locality.
It requires to maintain CF model at each children cells which need
to be upgrade. It hurts the scalability because more maintenance
and storage is required for CF model at each child cell. To
determine whether the child cells are need to be upgrade two
perecentage values are calculated that is locality gain and
scalability loss. Child cells of cell cp are upgrade if following
condition holds.

M * locality gain > (1-M) * Scalability loss.

It is opposite to downgrading α-cells to β-cell. Locality gain is
calculated same way as the locality loss is calculated. Scalability
loss is estimation of storage required to maintain CF model at
child cells. For item based CF Model the maximum size is n[I] . n
is model size. By multiplying n[I] to the number of bytes required
to store an item to find upper bound of storage size. Scalability
loss is calculated by the sum of These four estimated sizes (sizes)
divided by the sum of existing parent cell and sizes.
Time required to calculate scalability loss is O(1) and time
required to calculate locality gain is O(|Icp|). Total time cost to
upgrade cells to α-cell is O(|Icp|).

Minakshi Pachpatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3302-3306

www.ijcsit.com 3304

Fig 6.(a) Two Level Pyramid. (c) Locality loss/gain. (b)

Recommendation model and Item ratings distribution. The value
of RSc,I and RPc,I is derived from item ratings statistics

table.Value of LGc,i is used to calculate overall cell locality loss.

4) Upgrading β-cells to α-cells
Upgrading β-cells to α-cells increase the recommendation locality.
It requires to maintain CF model at each children cells which need
to be upgrade. It hurts the scalability because more maintenance
and storage is required for CF model at each child cell. To
determine whether the child cells are need to be upgrade two
perecentage values are calculated that is locality gain and
scalability loss. Child cells of cell cp are upgrade if following
condition holds.

M * locality gain > (1-M) * Scalability loss.
It is opposite to downgrading α-cells to β-cell. Locality gain is
calculated same way as the locality loss is calculated. Scalability
loss is estimation of storage required to maintain CF model at
child cells. For item based CF Model the maximum size is n[I] . n
is model size. By multiplying n[I] to the number of bytes required
to store an item to find upper bound of storage size. Scalability
loss is calculated by the sum of These four estimated sizes (sizes)
divided by the sum of existing parent cell and sizes.
Time required to calculate scalability loss is O(1) and time
required to calculate locality gain is O(|Icp|). Total time cost to
upgrade cells to α-cell is O(|Icp|).

5) Downgrades β-cells to γ-cells and vice versa.
In this β-cells of children quadrant q at level h is downgraded to γ-
cells. It has same parent at upper level.It does not required
overhead of storing item ratings statistics. It reduce the amount of
locality. Decision is taken based on MAX_SLEVEL, maximum
number of consecutive pyramid levels. The value is between 0
and total height of the pyramid. A high value of MAX_SLEVEL
causes maintaining more β-cell and less γ-cell. As shown in fig. 4
two levels of pyramid are β-cell and third level will automatically
set to γ-cell. For each β-cell there is S-Level counter which stores
the consecutive number of β-cell levels. If its children cells are β-
cell then MAX_SLEVEL is compared with S_LEVEL counter, at
a β-cell. The counter counts only when consecutive level contains
β-cell if it encounter α-cells counter reset to zero. If S_LEVEL
counter is greter than or equal to MAX_SLEVEL then children
cells downgraded to γ-cells.Similarly S_LEVEL counter is use to
upgrade γ-cells to β-cell.

IV. NON-SPATIAL USER RATINGS FOR SPATIAL ITEMS.
In this recommendations are produced using tuple(user, item ,
ilocation ,rating). For generating the recommendations for spatial
items item based collaborative filtering is used along with travel
penalty. It is a technique to limit the user choice venues based on
minimum travel distance.

A. Query Processing.
For query processing ,recommendations are generated using item
based collaborative filtering to rank the items using travel penalty
technique for user u and spatial item i based on RecScore(u,i)
computed as follows.

 RecScore(u,i)=P(u,i) –TravelPenalty(u,i)

P(u,i) is the predicted rating of item i for user u.
TravelPenalty(u,i) is travel distance between u and i normalize to
same value range as rating. When processing the query to
compute the travelling distance for all candidate is expensive so it
necessary to avoid use of this equation for all computation. To
avoid such computation , evaluate items in monotonically
increasing order of travel distance.

Algorithm2 gives pseucode for query processing algorithm which
takes User u, Location l, Limit k as a input and ge nrates R list of
top k-recommended items. Algorithm uses k- nearest algorithm to
find the items spatially close to the user, and fills the list R, then R
is sorted by recommendation score calculated by equation. Lowest
recommendation value is set as RecScore for kth item in list R.
Algorithm retrieves item in incremental order of their penalty
score using k –nearest neighbor algorithm. For each item i
maximum possible recommendation score is calculated by
subtracting travel penalty from MAX_RATING. If i is not fit into
top k-recommended list with its maximum possible score then
algorithm terminates without computing further travel penalty for
more items. If early termination case does not arise algorithm
continue to compute score for each item and insert into list R.

V. SPATIAL USER RATINGS FOR SPATIAL ITEMS.
Spatial user ratings for Spatial items generates recommendations
using tuple(user, ulocation, item, ilocation, ratings). LARS*
takes the advantage of using both user partitioning technique and
travel penalty for generating recommendations with slight
modifications. The data structure and maintenance techniques are
same as used in both methods used previously. Only the
difference is prediction score p(u,i) used in recommendation score
calculation is generated using the collaborative filtering method.

Minakshi Pachpatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3302-3306

www.ijcsit.com 3305

VI. DATASET.
Dataset name MH-Hotels is created which consist of list of hotels
in Maharashtra, India. Users list include userid, user name,
location.Venues list include hotelid , hotel name, location. Rating
list contains userid, venueid and ratings(1 to 5)where 1 is lowest
rating and 5 is highest rating. Pyramid is constructed so that it will
generate more localized recommendations by maintaining more α-
cells using algorithm1.cells are downgrade or upgrade as per the
requirement of localization using pyramid maintenanace
algorithm.

VII.CONCLUSIONS
.LARS* overcomes the problem faced by traditional
recommender system. It uses User partitioning technique and
travel penalty to concern with spatial ratings and spatial item
ratings. Algorithm provides efficiency for sclability and locality.
As CF model is maintained depending upon the number of α-cells
in the pyramid it assuares quality of recommendations as well as
fast response time as number of user goes on increasing.

REFERENCES
[1] G. Linden, B. Smith, and J. York, “Amazon.com recommenda-tions:

Item-to-item collaborative filtering,” IEEE Internet Comput., vol. 7,
no. 1, pp. 76–80, Jan./Feb. 2003.

[2] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: An open architecture for collaborative filtering of
netnews,” in Proc. CSWC, Chapel Hill, NC, USA, 1994.

[3] The facebook blog. Facebook Places [Online]. Available:
http://tinyurl.com/3aetfs3

[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and pos-sible
extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–
749, Jun. 2005.

[5] MovieLens [Online]. Available: http://www.movielens.org/
[6] Foursquare [Online]. Available: http://foursquare.com
[7] New York Times - A Peek into Netflix Queues [Online]. Available:

http://www.nytimes.com/interactive/2010/01/10/nyregion/
20100110-netflix-map.html

[8] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel, “LARS:
A location-aware recommender system,” in Proc. ICDE,
Washington, DC, USA, 2012.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in Proc. Int. Conf.
WWW, Hong Kong, China, 2001.

[10] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proc. Conf. UAI,
San Francisco, CA, USA, 1998.

[11] W. G. Aref and H. Samet, “Efficient processing of window queries
in the pyramid data structure,” in Proc. ACM Symp. PODS, New
York, NY, USA, 1990.

[12] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for
retrieval on composite keys,” Acta Inf., vol. 4, no. 1, pp. 1–9, 1974.

[13] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proc. SIGMOD, New York, NY, USA, 1984.

[14] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitor-
ing of spatial queries in wireless broadcast environments,” IEEE
Trans. Mobile Comput., vol. 8, no. 10, pp. 1297–1311, Oct. 2009.

[15] K. Mouratidis and D. Papadias, “Continuous nearest neighbor
queries over sliding windows,” IEEE Trans. Knowl. Data Eng., vol.
19, no. 6, pp. 789–803, Jun. 2007.

[16] M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: Scalable
incremental processing of continuous queries in spatiotemporal
databases,” in Proc. SIGMOD, Paris, France, 2004.

[17] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl,
“Evaluating collaborative filtering recommender systems,” ACM
TOIS, vol. 22, no. 1, pp. 5–53, 2004.

[18] M. J. Carey and D. Kossmann, “On saying "Enough Already!" in
SQL,” in Proc. SIGMOD, New York, NY, USA, 1997.

[19] S. Chaudhuri and L. Gravano, “Evaluating top-k selection queries,”
in Proc. Int. Conf. VLDB, Edinburgh, U.K., 1999.

[20] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algo-rithms
for middleware,” in Proc. ACM Symp. PODS, New York, NY,
USA, 2001.

[21] J. Bao, C.-Y. Chow, M. F. Mokbel, and W.-S. Ku, “Efficient evalu-
ation of k-range nearest neighbor queries in road networks,” in Proc.
Int. Conf. MDM, Kansas City, MO, USA, 2010.

[22] G. R. Hjaltason and H. Samet, “Distance browsing in spatial
databases,” ACM TODS, vol. 24, no. 2, pp. 265–318, 1999.

[23] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis,
“Continuous nearest neighbor monitoring in road networks,” in
Proc. Int. Conf. VLDB, Seoul, Korea, 2006.

[24] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate
nearest neighbor queries in spatial databases,” ACM TODS, vol. 30,
no. 2, pp. 529–576, 2005.

[25] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline opera-
tor,” in Proc. ICDE, Heidelberg, Germany, 2001.

[26] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in
Proc. Int. Conf. VLDB, Seoul, Korea, 2006.

[27] N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries
over web-accessible databases,” in Proc. ICDE, San Jose, CA, USA,
2002.

[28] P. Venetis, H. Gonzalez, C. S. Jensen, and A. Y. Halevy, “Hyper-
local, directions-based ranking of places,” PVLDB, vol. 4, no. 5, pp.
290–301, 2011.

[29] M.-H. Park, J.-H. Hong, and S.-B. Cho, “Location-based recom-
mendation system using Bayesian user’s preference model in mobile
devices,” in Proc. Int. Conf. UIC, Hong Kong, China, 2007.

[30] Netflix News and Info - Local Favorites [Online]. Available:
http://tinyurl.com/4qt8ujo

 [31] Y. Takeuchi and M. Sugimoto, “An outdoor recommendation
system in based on user location history,” in Proc. Int. Conf. UIC,
Berlin, SIGMOD,Germany, 2006.

[32] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative loca-
tion and activity recommendations with GPS history data,” in Proc.
Int. Conf. WWW, New York, NY, USA, 2010.

[33] M. Ye, P. Yin, and W.-C. Lee, “Location recommendation for
location-based social networks,” in Proc. ACM GIS, New York, NY,
USA , 2010.

Minakshi Pachpatil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3302-3306

www.ijcsit.com 3306

