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Abstract— In this paper location–aware recommendation 
system that uses spatial ratings to produce personalized 
recommendations. System uses Collaborative filtering 
techniques to generate recommendation based on user 
location,item location or both user and item location . LARS* 
uses spatial ratings for spatial items , Spatial ratings for Non-
spatial items, Non spatial ratings for spatial items to generate 
personalized recommendation. For spatial ratings for non 
spatial items LARS* uses user partitioning technique where 
spatial ratings are distributed as per user location in the 
pyramid. Pyramid Maintenance algorithm provided to 
achieve required scalability or locality. Travel penalty 
technique is use to find recommended item with minimum 
distance from querying user. For spatial ratings for spatial 
items both the techniques are combined with very small 
modification. LARS* is scalable as number of γ-cells are 
increased in pyramid and to improve locality α-cells are 
increased to maintain CF Model. LARS* is efficient as 
compare to traditional recommendation system because 
algorithm provided is strong enough to cope challenge of 
locality and scalability. 
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I. INTRODUCTION 
The goal of recommender system is to generate personalized 
recommendations for items or products that might interest them. 
Suggestions for books on Amazon[1],or movies on Netflix are 
example of recommender system. Recommender systems make 
use of  Collaborative filtering that make use of past community 
opinions to find similar users or items to generate number of 
personalized items.Content based filtering that make use of user 
profile or description of items. Currently working  
recommendation system make use of (user , item, rating) 
attributes which  is not produce location based recommendations. 
Spatial recommender system embeds user /item location with 
ratings e.g. location based social networks(e.g. Forsquare and 
Facebook Places[4]) allow check-in at spatial destination & rate 
their visits, Sindbad [3] a location based social network system 
injects location awarenesss within every aspect of social 
interaction  and  functionality in the system.LARS* produces high 
quality recommendations using Collaborative filtering in an 
efficient manner. System produces recommendations using three 
types of spatial ratings in a single framework. (1)Spatial ratings 
for non spatial items represented using 4-tuple (user, ulocation, 
item, rating) where ulocation is the user location , e.g. user at 
home gives rating to the movie/books/restaurant etc.(2)Non-
spatial ratings for spatial items having 4 tuples(user, item, 
ilocation, rating),here item location is specified.e.g. user from 
unknown location  rating a restaurant/hotels. (3) Spatial ratings for 
spatial items has 5- tuples(user, ulocation, item, ilocation, 

ratings).e.g. user at his/her location rating a restaurant visted for 
lunch. 
Two techniques that motivate the need for location aware  
Preference locality: preference locality suggests that user ratings 
from one spatial region are different from ratings in another 
spatial region. Recommendations should be generated by  those 
ratings which are spatially close to the querying user. 
Travel Locality: when recommended items are spatial then user 
has to travel minimum distance when visiting these venues. This 
property is termed as “travel locality”. 

II. LARS  OVERVIEW
This section provides overview of LARS* query model and 
Collaborative filtering method. 
A. LARS* Query Model 

Application has given UserId U, K Numeric limit, Location of 
the user L, then LARS* generates K-recommended items for 
querying user. It can support snap shot queries and continuous 
queries. 
B. Item-based Collaborative Filtering. 
Main idea of collaborative filtering is to use past opinions of user 
community to predict which item current user will prefer or 
interested in. Pure collaborative filtering approach takes user-item 
matrix as a input and produces following types of output. (1) list 
of n-recommended items which contains those items that user not 
purchased before. (2) (numerical) prediction indicating to what 
degree current user will like the items. In Collaborative filtering 
assumes a set of n items I={i1,i2,…in} and a set of m users 
U={u1,u2,…..um},  and each user ui has list of items Iui for 
which user expressed opinions. Opinions can be numeric rating 
e.g.(1 to 5 where 1 represents bad choice and 5 represents best
choice) or unary rating (e.g.checkboxes) .Active user Ua for 
whom the collaborative filtering generates the k-recommended 
items.  
It has two forms. 
Prediction: Predicted value is specified in same way as opinions 
are expressed by active user ua. It is the numerical value 
expressing predicted likeliness of item ij. 
Recommendation: A list of items Ir that active user ua will like 
most it is the items such that Ir ∩ Iua=ᶲ.  
In item based collaborative filtering prediction is computed using 
similarity between items. Cosine similarity is used to compute 
similarity as it produces more accurate result. The similarity 
between two items a and b is defined as a rating vector  ͞a and  ͞b as 
shown in fig.2. Similarity difference is calculated as follows. 

The possible similarities are between 0 and 1,where 1 indicates 
strong similarity. After the similarity between the items are 
calculated the next stage is to predict the rating using 
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prediction.For user u and product p prediction is calulated as 
follows. 

 
Prediction is the sum of ru,i, a user u’s rating for item i ,weighted 
by sim(i ,p) similarity of product p to candidate item i,then 
normalized by similarity score between i and p. 
User receives as recommendations the top k-item ranked by 
pred(u ,p). 
 

III. SPATIAL USER RATINGS FOR NON-SPATIAL ITEMS. 
LARS* produces recommendations for spatial ratings for non-
spatial items using the tuple(user, uloction, item, rating). Main 
aim is to achieve preference locality i.e. user opinions are spatially 
unique, To produce recommendations there are 3 requirements. 
(1)Scalability: System should be scalable as number of users goes 
on increasing. (2)Locality: while generating the recommendations 
consider the ratings of those user spatially close to the querying 
user. (3)Influence: ability to control the size of spatial 
neighborhood by system users. 
User partitioning technique is use to generate recommendations. 
This technique uses pyramid structure where space is partitioned 
into different levels of the pyramid as per user location attribute. 
System then produces recommendations using remaining 
attributes(user, item, rating). Shape of the pyramid is driven by 
three goals scalability, influence, locality. 
 

 
Fig. 1. Item-based CF Model generation.  

(a) Rating Matrix. (b)Item based CF Model. 
 

 
 

Fig.2. Item-based Similarity calculation. 
 

A. Data Structure.  
The pyramid divides the space into h different levels. It make use 
of partial in-memory pyramid structure[11] as shown in fig.4. For 
a  level h pyramid partitions the space into 4h  equal area grid 
cells. At level 0 (root) representing the total geographic area as a 
one cell. Level 1 partitioned the space into 4 equi-area cells, and 
so on. Each cell is represented as by unique cell id. As per the 
need of recommendation locality and scalability pyramid 
maintains three types of cells. Empty Cell(γ-
cell),Recommendation model cell(α-cell),  Statistics Cell(β-cell), 
Empty Cell(γ-cell). 
Recommendation Model Cell(α-cell). Each (α-cell) stores an 
item based collaborative  filtering model. This model is built 
using spatial ratings located in spatial region of that cell. The α-
cellis the root cell of the pyramid and represent traditional item 

based collaborative filtering model. α-cell maintain items ratings 
statistics which is in its spatial extents. If Cp is α-cell it contains 
rating statistics of its 4 cells as shown in fig. 5. For item i1 ratings 
located in child cells equal to 109,3200,14,54. 

Statistics Cell(β-cell). It contains statistics which is within its 
spatial region. Difference between α-cell and β-cell is that β-cell 
does not maintains Collaborative filtering model.It is light weight 
cell as it require less space as compare to α-cell. 
Empty Cell(γ-cell). γ-cell is a cell that does not maintain statistics 
and collaborative filtering model. So it is the most light weight 
cell as it has no CF model. α- cell is responsible for answering 
recommendation queries as it contains collaborative filtering 
model. Pyramid structure that contains only α- cells achives 
highest locality. Statistics maintained in β- cell determines 
whether the children of that cell is of α- cells for locality point of 
view. γ- cells is leaf cells in the pyramid. Based on the tradeoff 
between locality and scalability cells are upgrade or downgrade. 
To achieve locality more α- cells are maintained in the pyramid 
and to achieve scalability more γ-cells are maintained. β –cells 
comes as intermediary cells which further increase the locality 
where scalability is not affected. 

 

 
Fig.4 Pyramid Data Structure. 

 
Fig.5 Example of Item Ratings Statistics Table. 

 

B. Data Structure Maintainance.  
Root cell in the pyramid represents entire region and cells in 
lowest level representing more localized regions.Initially pyramid 
is constructed using all spatial ratings and all the cells in the 
pyramid is α-cells. Then invoke cell type maintenance step which 
scans each cells and downgrades cells to (β –cell or γ –cell) if 
necessary. 
As number of users and items added to the system data will goes 
on increasing. So that size collaborative filtering model as well as 
number of recommendations produced from each cell also 
increasing. Cell maintenance is invoked when cell receives N% 
new ratings, which is computed from the existing ratings.  
Features of pyramid maintenance as follows. 
(1) Maintenance is performed offline using old pyramid cells.        
(2) Maintenance does not reconstruct the whole pyramid at 
once ,only one cell is rebuilt at a time.  
(3)Maintenance is performed only when N%  ratings are received 
by the cell. 
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C. Maintenance Algorithm. 
Algorithm1 provides pseudocode for pyramid maintenance 
algorithm. It receives input as a Cell C, level h. This algorithm 
includes three main steps. 
Step I: Statistics Maintenance. Parameters in cell C for each item  

i represents number of user ratings associated with its 
four children.Item ratings statistics table contained 
ratings which are in spatial extents of cells.  
If  N% new ratings received then cell switching 
decision is made. 

Step II: Model Rebuild. As the cell receives new ratings the 
second step is to rebuild Item based collaborative 
filtering model. Model is rebuild at cell C only if cell 
is α-cell. It is necessary to rebuild the model as new 
ratings enter the system and it should be evovlve in 
Collaborative filtering model. 

Step III: Cell Child Quadrant Maintenance. Pyramid is driven by 
three goals scalability, influence, locality.    Locality 
and scalability is achieved by cell switching decision. 
If Cell  C child quadrant cells are α-cells then these 
cells are downgraded to β-cells by calling function 
CheckDowngradetoScells. If child quadrant cells are 
β-cells then cells are switched to α-cells by calling 
function CheckUpgradetoMCells. If child quadrant 
cells are β-cells then LARS* first considers to swith 
the cells to α-cells i.e. cell upgradation is done. If 
cells are not switched to α-cells then downgraded to 
γ-cells. Cell switching decision is taken completely in 
quadrants. 

 
1)  Recommendation Locality 
Running Example. Two level pyramid in which root cell is cp and 
it is divided into four cells c1,c2,c3,c4 shown in fig.6. Eight users 
u={u1,u2,……,u8} and eight items i={i1,i2,….i8}. each user has 
given ratings to available items.  As shown in fig. 6(b) user u2 and 
u5 belongs to cell c2 both rated the items i2,i5. So the similarity 
score calculated at c2 is similar to similarity score calculated at 
parent cell cp. As both the users belongs to same cell. This will 
not be same if users belong to different cell. LARS* loses the 
locality if CF model produced at child cells different than the CF 
model at parent cell. System calculates locality gain/lost as 
follows. 
 Locality Loss/Gain. Table2 gives mathematical notions used for 
calculating locality loss/gain. Items ratings pair set (RPc,i)  is a set 
of pairs of users have rated item I in cell c. 
e.g. RPcp,i7 is the item rating pair set for item i7 in cell cp with 
three elements i.e. RPcp,i7 = { <u3,u6> ,<u3,u7> ,<u6,u7>}. For 
each item define the Skewed Item Rating Set RSc,I which is total 
number of user pairs in cell c that rated the item I such that user 
pairs does not belongs to same cell c. i.e. Skewed item ratings set 
for i2 in cell cp is null as users u2 and u5 rated item i2 located in 
same child cell c2. Skewed item ratings set for i4 is 
RScp,i4={<u2,u7>, <u7,u4>, <u2,u4>}. 
Using these parameters calculate the item locality loss LGc,i for 
each item as follows. 
Defination1. Item Locality Loss(LGc,i). it is defined as degree of 
locality loss of item when four children cell of cell c is 
downgraded to β-cell , such that 0<=LGc,i<=1. 
Defination 2. Locality Loss(LGc). It is defined as total locality 
loss of cell c by downgrading four children cells to β-cell 
(0<=LGc<=1). It is the sum of all item locality loss normalized by 
total number of items in the cell. 
cell locality loss determines whether cell children need to 
downgrade from β-cell to γ-cell ,or  upgrade from γ-cell to β-cell, 
downgraded from α–cells to β-cell.Which are explained as follows. 

 
2)   Downgrading α-cells to β-cell. 
This operation downgrades the entire cell quadrant at level h from 
α-cells to β-cell having common parent at level h-1. Downgrading 
the cells to β-cell improves the scalability with  two performance 
improvement (1)Continuous query processing computation is less 
as it does not maintain CF model and no need to update 
recommendation query answer as it crosses boundry of β-cell if it 
covers large spatial region. (2) low maintenance cost as β- cells 
does not contain CF model so less CF models are built 
periodically.  
To downgrade the cells to β-cells call the function 
CheckDowngradeToSCells in Algorithm1. It require two 
percentage values (1)Locality Loss as described in prevous 
section.(2) Scalability gain,the amount of scalability gain by 
downgrading the cells. LARS* Downgrades  the cells to β-cell if 

(1-M) * Scalability_gain  > M * locality_loss 
M is a real number having range[0,1]. Large value of M is use to 
achieve locality, Scalability is achieved by small value of M. 
Scalability Gain. Scalability gain is calculated by the summation 
of recommendation model size of cells to be downgraded(sizem) 
divides this value by sum of sizem and model size of parent cell. 
Cost. Using Item Ratings statistics table at cell cp the locality loss 
is calculated inO( |Icp| ) time, where Icp is the total number of 
items in the cell. Time required to calculate scalability gain is 
O(1). i.e. total time cost required to downgrade cells to β-cells is 
O( |Icp| ). 
 
3) Upgrading β-cells to α-cells 
Upgrading β-cells to α-cells increase the recommendation locality. 
It requires to maintain CF model at each children cells which need 
to be upgrade. It hurts the scalability because more maintenance 
and storage is required for CF model at each child cell. To 
determine whether the child cells are need to be upgrade two 
perecentage values are calculated that is locality gain and 
scalability loss. Child cells of cell cp are upgrade if following 
condition holds. 
 

M * locality gain > (1-M) *  Scalability loss.  
 

It is opposite to downgrading α-cells to β-cell. Locality gain is 
calculated same way as the locality loss is calculated. Scalability 
loss  is estimation of storage required to maintain CF model at 
child cells. For item based CF Model the maximum size is n[I] . n 
is model size. By multiplying n[I] to the number of bytes required 
to store an item to find upper bound of storage size. Scalability 
loss is calculated by the sum of These four estimated sizes (sizes) 
divided by the sum of existing parent cell and sizes. 
Time required to calculate scalability loss is O(1) and time 
required to calculate locality gain is O( |Icp| ). Total time cost to 
upgrade cells to α-cell is O( |Icp| ). 
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Fig 6.(a) Two Level Pyramid. (c) Locality loss/gain. (b) 

Recommendation model and Item ratings distribution. The value 
of RSc,I and RPc,I is derived from item ratings statistics 

table.Value of  LGc,i is used to calculate overall cell locality loss. 
 

4 )  Upgrading β-cells to α-cells 
Upgrading β-cells to α-cells increase the recommendation locality. 
It requires to maintain CF model at each children cells which need 
to be upgrade. It hurts the scalability because more maintenance 
and storage is required for CF model at each child cell. To 
determine whether the child cells are need to be upgrade two 
perecentage values are calculated that is locality gain and 
scalability loss. Child cells of cell cp are upgrade if following 
condition holds. 

M * locality gain > (1-M) *  Scalability loss. 
It is opposite to downgrading α-cells to β-cell. Locality gain is 
calculated same way as the locality loss is calculated. Scalability 
loss  is estimation of storage required to maintain CF model at 
child cells. For item based CF Model the maximum size is n[I] . n 
is model size. By multiplying n[I] to the number of bytes required 
to store an item to find upper bound of storage size. Scalability 
loss is calculated by the sum of These four estimated sizes (sizes) 
divided by the sum of existing parent cell and sizes. 
Time required to calculate scalability loss is O(1) and time 
required to calculate locality gain is O( |Icp| ). Total time cost to 
upgrade cells to α-cell is O( |Icp| ). 

5) Downgrades β-cells to γ-cells and vice versa. 
In this β-cells of children quadrant q at level h is downgraded to γ-
cells. It has same parent at upper level.It does not required 
overhead of storing item ratings statistics. It reduce the amount of 
locality. Decision is taken based on MAX_SLEVEL, maximum 
number of consecutive pyramid levels. The value is between 0 
and total height of the pyramid. A high value of MAX_SLEVEL 
causes maintaining more β-cell and less γ-cell. As shown in fig. 4 
two levels of pyramid are β-cell and third level will automatically 
set to γ-cell. For each β-cell there is S-Level counter which stores 
the consecutive number of β-cell levels. If its children cells are β-
cell then MAX_SLEVEL is compared with S_LEVEL counter, at 
a β-cell. The counter counts only when consecutive level contains 
β-cell if it encounter α-cells counter reset to zero. If S_LEVEL 
counter is greter than or equal to MAX_SLEVEL then children 
cells downgraded to γ-cells.Similarly S_LEVEL counter is use to 
upgrade γ-cells to β-cell. 
 

IV. NON-SPATIAL USER RATINGS FOR SPATIAL ITEMS. 
In this recommendations are produced using tuple(user, item , 
ilocation ,rating). For generating the recommendations for spatial 
items item based collaborative filtering is used along with travel 
penalty. It is a technique to limit the user choice venues based on 
minimum travel distance. 

 
A. Query Processing. 
For query processing ,recommendations are generated using item 
based collaborative filtering to rank the items using travel penalty 
technique for user u and spatial item i based on RecScore(u,i) 
computed as follows. 
 
         RecScore(u,i)=P(u,i) –TravelPenalty(u,i) 
 
P(u,i) is the predicted rating of item i for user u. 
TravelPenalty(u,i) is travel distance between u and i normalize to 
same value range as rating. When processing the query to 
compute the travelling distance for all candidate is expensive so it 
necessary to avoid use of this equation for all computation. To 
avoid such computation , evaluate items in monotonically 
increasing order of travel distance. 
 
Algorithm2 gives pseucode for query processing algorithm which 
takes User u, Location l, Limit k as a input and ge  nrates R list of 
top k-recommended items. Algorithm uses k- nearest algorithm to 
find the items spatially close to the user, and fills the list R, then R 
is sorted by recommendation score calculated by equation. Lowest 
recommendation value is set as RecScore for kth item in list R. 
Algorithm retrieves item in incremental order of their penalty 
score using k –nearest neighbor algorithm. For each item i 
maximum possible recommendation score is calculated by 
subtracting travel penalty from MAX_RATING. If i is not fit into 
top k-recommended list with its maximum possible score then 
algorithm terminates without computing further travel penalty for 
more items. If early termination case does not arise algorithm 
continue to compute score for each item and insert into list R. 
 

V. SPATIAL USER RATINGS FOR SPATIAL ITEMS.  
Spatial user ratings for Spatial items generates recommendations 
using tuple(user, ulocation, item, ilocation, ratings).  LARS*  
takes the advantage of using both user partitioning technique and 
travel penalty for generating recommendations with slight 
modifications. The data structure and maintenance techniques are 
same as used in both methods used previously. Only the 
difference is prediction score p(u,i) used in recommendation score 
calculation is generated using the collaborative filtering method. 
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VI. DATASET.  
Dataset name MH-Hotels is created which consist of list of hotels 
in Maharashtra, India. Users list include userid, user name, 
location.Venues list include hotelid , hotel name, location. Rating 
list contains userid, venueid and ratings(1 to 5)where 1 is lowest 
rating and 5 is highest rating. Pyramid is constructed so that it will 
generate more localized recommendations by maintaining more α-
cells using algorithm1.cells are downgrade or upgrade as per the 
requirement of localization using pyramid maintenanace 
algorithm. 
 

VII.CONCLUSIONS 
.LARS* overcomes the problem faced by traditional 
recommender system. It uses User partitioning technique and 
travel penalty to concern with spatial ratings and spatial item 
ratings. Algorithm provides efficiency for sclability and locality. 
As CF model is maintained depending upon the number of α-cells 
in the pyramid it assuares quality of recommendations as well as 
fast response time as number of user goes on increasing. 
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